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Abstract

Starting from enantiopurdRj-propene oxide the first enantioselective total synthesis of the potent neuronal cell
protecting alkaloid carquinostatin A has been accomplished by using iron- and nickel-mediated coupling reactions.
© 2000 Elsevier Science Ltd. All rights reserved.

A broad range of biologically active carbazole alkaloids has been obtained from natural Sources.
In 1993 Seto et aisolated carquinostatin A, the first example of a carbazole-3,4-quinone alkaloid, from
Streptomyces exfoliat2g19-SVT23 Carquinostatin A was shown to be a potent neuronal cell protecting
substance which also exhibits a free radical scavenging activity. We have a continuous program directed
towards the development of novel methodologies for the total synthesis of pharmacologically active
carbazole alkaloid$.So far only two total syntheses for racemic carquinostatin A have been reported.
The first route used an iron-mediated oxidative coupling of cyclohexadiene with a fully substituted
arylamin@? and the second approach proceeded via a palladium-mediated oxidative coupping of
prenylaniline and amrtho-benzoquinon&® In the present work we describe the first enantioselective
total synthesis of carquinostatin A based on the iron-mediated synthesis (Scheme 1).
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The precursors for the carbazole framework are the comples salll the enantiopuré=j-arylamine
2. Introduction of the prenyl group was projected by a regioselective nickel-mediated coupling using
prenyl bromide3 at a later stage of the synthesis. The chiral side chain of the reqyeatylamine2
should derive fromR)-propene oxide.

Hydrolytic kinetic resolution of racemic propene oxide using tRdR]-(salen)cobalt(ll) complex as
described by Jacobsgafforded the enantiopurd(-propene oxide ( 2’=+11.96, neat). Because of
contradictory assignmenfsthe absolute configuration at the stereogenic center was unambiguously
confirmed by an X-ray crystal structure determination at the stage of the 6-bromocarbazole (see below).

By modification of the original procedufdor the regioselective bromination of 3-methylveratrd|e
the bromo derivativés was prepared almost quantitatively (Scheme 2). Halogen—metal exchange using
n-butyllithium followed by reaction with theR)-propene oxide, obtained by Jacobsen’s meth(sde
above), afforded theR)-carbinol6 (%= 34.4, c=1, CHGJ). Protection of6 as the R)-acetate?

( &= 16.5, c=1, CHGJ) and subsequent regioselective nitration led to fRenjtro compounds

(  8’=+173.2, c=1, CHGJ). Catalytic hydrogenation a8 provided the R)-arylamine2 ( = 1.7,
c=1, CHCEB). This route affords theR)-arylamine2 in five steps and 57% overall yield from commercial
3—methylveratro|e4
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Scheme 2.
Treatment of a 6-bromocarbazole with bisforomo)( 3-prenyl)nickel] 9 was envisaged for the
regioselective prenylatiohComplex9 was prepared by reaction of prenyl bromi8levith 3 equiv. of
tetracarbonylnickel in benzene at 60°C (Scheme 3) and is used in situ.
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Scheme 3.

Construction of the carbazole framework was achieved using the previously reported conditions for
the oxidative coupling of the complex sdltwith arylamines®° Reaction ofl with 2 equiv. of the
(R)-arylamine2 in acetonitrile at room temperature for 9 days in the air provided in 94% vyield the
tricarbonyl( *-4a,9a-dihydro-Bl-carbazole)iron complex0 ( %O: 6.50, c=0.5, CHG)) (Scheme 4).
Demetalation of the tricarbonyliron complé@® with trimethylamineN-oxide in acetone at refld% and
subsequent aromatizatitnby dehydrogenation using 10% palladium on activated carbon in boiling

o-xylene with 1-hexene for the trapping of hydrogen provided the carbazble 2= 95.3, c=1,
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CHCl) in 87% yield over both steps. Regioselective bromination of the carbdAdby electrophilic
substitution usingN-bromosuccinimide in the presence of catalytic amounts of hydrogen bromide in
acetonitrile at room temperature afforded quantitatively the 6-bromocarbsz¢le 2= 43.0, c=0.5,
CHCl). The X-ray analysis of the 6-bromocarbazdi2 (Fig. 1)'? showed unequivocally that the
absolute configuration R by the anomal dispersion (Flack parametesr: 0.010(9))!3
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Scheme 4. Reagents and conditions: (a) MeCN, air, 25°C, 9 days (94%); (bMQV2H,O (8 equiv.), acetone, 56°C, 4 h,

2. 10% Pd/Cp-xylene/15 vol.-% 1-hexene, reflux, 4 h (87%, two steps); (c) NBS, HBr (cat.), MeCN, 25°C, 1 h (100%); (d)
complex9 (2 equiv.), DMF, 65°C, 15 h (94%); (e) LIAIH(1.6 equiv.), EXO, 25°C, 45 min (98%); (f) Cof(4 equiv.), dioxane

(2 equiv.)/water (10 equiv.), 25°C, 1 h (70%)

Prenyl coupling of the 6-bromocarbazdl@ by reaction with 2 equivalents of the in situ-prepared
dimeric nickel complex9 in dry and degassedl,N-dimethylformamide at 65°C provided the 6-
prenylcarbazolel3 (2= 47.2, ¢=0.5, CHG) in 94% vyield (Scheme 4). Removal of the acetyl
group by reduction with lithium aluminum hydride afforded almost quantitatively the carldidol
(2= 10.5, c=0.5, CHG). Recently, Nakata et ateported the oxidative demethylation of 1,4-
dimethoxybenzenes tp-benzoquinones using cobalt(lll) fluoridé&.We could now demonstrate that
this method is also useful for the transformation of 1,2-dimethoxybenzerebdazoquinones. Thus,
oxidation of14 with cobalt(l1l) fluoride provided enantiopure carquinostatin A (m.p. 179-180°C) which
was in agreement with the natural product (m.p. 144-1458Cxll spectral data. Conversion of the
synthetic carquinostation A to th&®(Mosher estet;!®> addition of 1% of the diastereocisomeriB)¢
Mosher esters obtained from )-carquinostatin A, and comparison of the corresponditig NMR
spectra at 500 MHz confirmed that the enantiomeric purity of our product is >99% ee.

The present synthesis provides enantiopure carquinostatin A in seven steps and 53% overall yield
based orl.
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Fig. 1. Molecular structure o012 in the crystal. Selected bond lengths (A): C8-Br 1.906(3), C1-C13 1.501(4), C13-C14
1.523(5), C14—C15 1.500(5), C14—03 1.470(4)
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