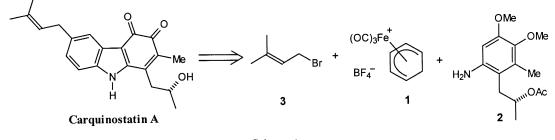


Tetrahedron Letters 41 (2000) 1171-1174

TETRAHEDRON LETTERS

Transition metal complexes in organic synthesis. Part 58:¹ First enantioselective total synthesis of the potent neuronal cell protecting substance carquinostatin A from (*R*)-propene oxide

Hans-Joachim Knölker,^{a,*} Elke Baum^b and Kethiri R. Reddy^a

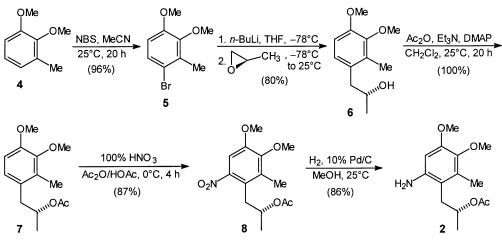

^aInstitut für Organische Chemie, Universität Karlsruhe, Richard-Willstätter-Allee, 76131 Karlsruhe, Germany ^bInstitut für Anorganische Chemie, Universität Karlsruhe, Engesserstraße, 76128 Karlsruhe, Germany

Received 18 November 1999; accepted 1 December 1999

Abstract

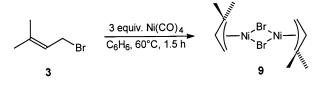
Starting from enantiopure (R)-propene oxide the first enantioselective total synthesis of the potent neuronal cell protecting alkaloid carquinostatin A has been accomplished by using iron- and nickel-mediated coupling reactions. © 2000 Elsevier Science Ltd. All rights reserved.

A broad range of biologically active carbazole alkaloids has been obtained from natural sources.² In 1993 Seto et al. isolated carquinostatin A, the first example of a carbazole-3,4-quinone alkaloid, from *Streptomyces exfoliatus* 2419-SVT2.³ Carquinostatin A was shown to be a potent neuronal cell protecting substance which also exhibits a free radical scavenging activity. We have a continuous program directed towards the development of novel methodologies for the total synthesis of pharmacologically active carbazole alkaloids.⁴ So far only two total syntheses for racemic carquinostatin A have been reported.⁵ The first route used an iron-mediated oxidative coupling of cyclohexadiene with a fully substituted arylamine^{5a} and the second approach proceeded via a palladium-mediated oxidative coupling of *p*-prenylaniline and an *ortho*-benzoquinone.^{5b} In the present work we describe the first enantioselective total synthesis of carquinostatin A based on the iron-mediated synthesis (Scheme 1).


* Corresponding author.

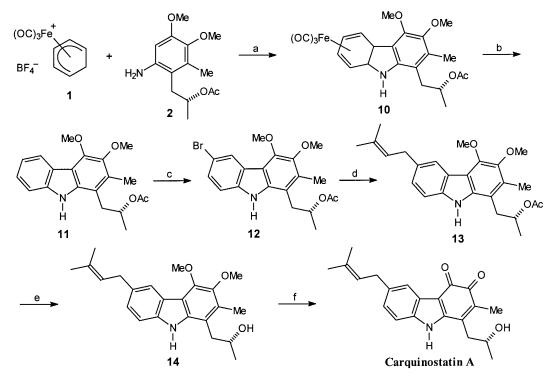
0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(99)02257-1

The precursors for the carbazole framework are the complex salt 1 and the enantiopure (R)-arylamine 2. Introduction of the prenyl group was projected by a regioselective nickel-mediated coupling using prenyl bromide 3 at a later stage of the synthesis. The chiral side chain of the required (R)-arylamine 2 should derive from (R)-propene oxide.


Hydrolytic kinetic resolution of racemic propene oxide using the (*R*,*R*)-(salen)cobalt(II) complex as described by Jacobsen⁶ afforded the enantiopure (*R*)-propene oxide ($[\alpha]_D^{20}$ =+11.96, neat). Because of contradictory assignments,⁶ the absolute configuration at the stereogenic center was unambiguously confirmed by an X-ray crystal structure determination at the stage of the 6-bromocarbazole (see below).

By modification of the original procedure⁷ for the regioselective bromination of 3-methylveratrole **4**, the bromo derivative **5** was prepared almost quantitatively (Scheme 2). Halogen–metal exchange using *n*-butyllithium followed by reaction with the (*R*)-propene oxide, obtained by Jacobsen's method⁶ (see above), afforded the (*R*)-carbinol **6** ($[\alpha]_D^{20} = -34.4$, c=1, CHCl₃). Protection of **6** as the (*R*)-acetate **7** ($[\alpha]_D^{20} = -16.5$, c=1, CHCl₃) and subsequent regioselective nitration led to the (*R*)-nitro compound **8** ($[\alpha]_D^{20} = +173.2$, c=1, CHCl₃). Catalytic hydrogenation of **8** provided the (*R*)-arylamine **2** ($[\alpha]_D^{20} = -1.7$, c=1, CHCl₃). This route affords the (*R*)-arylamine **2** in five steps and 57% overall yield from commercial 3-methylveratrole **4**.

Scheme 2.


Treatment of a 6-bromocarbazole with bis[(μ -bromo)(η^3 -prenyl)nickel] **9** was envisaged for the regioselective prenylation.⁸ Complex **9** was prepared by reaction of prenyl bromide **3** with 3 equiv. of tetracarbonylnickel in benzene at 60°C (Scheme 3) and is used in situ.

Scheme 3.

Construction of the carbazole framework was achieved using the previously reported conditions for the oxidative coupling of the complex salt **1** with arylamines.^{5a,9} Reaction of **1** with 2 equiv. of the (*R*)-arylamine **2** in acetonitrile at room temperature for 9 days in the air provided in 94% yield the tricarbonyl(η^4 -4a,9a-dihydro-9*H*-carbazole)iron complex **10** ([α]_D²⁰=-6.50, c=0.5, CHCl₃) (Scheme 4). Demetalation of the tricarbonyliron complex **10** with trimethylamine *N*-oxide in acetone at reflux¹⁰ and subsequent aromatization¹¹ by dehydrogenation using 10% palladium on activated carbon in boiling *o*-xylene with 1-hexene for the trapping of hydrogen provided the carbazole **11** ([α]_D²⁰=-95.3, c=1, c=1, c=1, c=1, c=1).

CHCl₃) in 87% yield over both steps. Regioselective bromination of the carbazole **11** by electrophilic substitution using *N*-bromosuccinimide in the presence of catalytic amounts of hydrogen bromide in acetonitrile at room temperature afforded quantitatively the 6-bromocarbazole **12** ($[\alpha]_D^{20} = -43.0$, c=0.5, CHCl₃). The X-ray analysis of the 6-bromocarbazole **12** (Fig. 1)¹² showed unequivocally that the absolute configuration is *R* by the anomal dispersion (Flack parameter: $\chi = -0.010(9)$).¹³

Scheme 4. Reagents and conditions: (a) MeCN, air, 25°C, 9 days (94%); (b) 1. Me₃NO·2H₂O (8 equiv.), acetone, 56°C, 4 h, 2. 10% Pd/C, *o*-xylene/15 vol.-% 1-hexene, reflux, 4 h (87%, two steps); (c) NBS, HBr (cat.), MeCN, 25°C, 1 h (100%); (d) complex **9** (2 equiv.), DMF, 65°C, 15 h (94%); (e) LiAlH₄ (1.6 equiv.), Et₂O, 25°C, 45 min (98%); (f) CoF₃ (4 equiv.), dioxane (2 equiv.)/water (10 equiv.), 25°C, 1 h (70%)

Prenyl coupling of the 6-bromocarbazole **12** by reaction with 2 equivalents of the in situ-prepared dimeric nickel complex **9** in dry and degassed *N*,*N*-dimethylformamide at 65°C provided the 6-prenylcarbazole **13** ($[\alpha]_D^{20} = -47.2$, c=0.5, CHCl₃) in 94% yield (Scheme 4). Removal of the acetyl group by reduction with lithium aluminum hydride afforded almost quantitatively the carbinol **14** ($[\alpha]_D^{20} = -10.5$, c=0.5, CHCl₃). Recently, Nakata et al. reported the oxidative demethylation of 1,4-dimethoxybenzenes to *p*-benzoquinones using cobalt(III) fluoride.¹⁴ We could now demonstrate that this method is also useful for the transformation of 1,2-dimethoxybenzenes to *o*-benzoquinones. Thus, oxidation of **14** with cobalt(III) fluoride provided enantiopure carquinostatin A (m.p. 179–180°C) which was in agreement with the natural product (m.p. 144–145°C)³ in all spectral data. Conversion of the synthetic carquinostation A to the (*R*)-Mosher ester,^{3,15} addition of 1% of the diastereoisomeric (*R*)-Mosher esters obtained from (±)-carquinostatin A,⁵ and comparison of the corresponding ¹H NMR spectra at 500 MHz confirmed that the enantiomeric purity of our product is >99% ee.

The present synthesis provides enantiopure carquinostatin A in seven steps and 53% overall yield based on **1**.

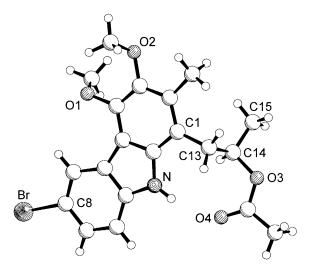


Fig. 1. Molecular structure of **12** in the crystal. Selected bond lengths (Å): C8–Br 1.906(3), C1–C13 1.501(4), C13–C14 1.523(5), C14–C15 1.500(5), C14–O3 1.470(4)

Acknowledgements

This work was supported by the 'Fonds der Chemischen Industrie' and the 'Alexander von Humboldt Stiftung'. We are grateful to the BASF AG, Ludwigshafen, for a generous gift of pentacarbonyliron.

References

- 1. Part 57: Knölker, H.-J.; Ahrens, B.; Gonser, P.; Heininger, M.; Jones, P. G. Tetrahedron 2000, 56, in press.
- 2. Reviews: Chakraborty, D. P. In *The Alkaloids*; Cordell, G. A., Ed.; Academic Press: New York, 1993; Vol. 44; p. 257. Furukawa, H. *J. Indian Chem. Soc.* **1994**, *71*, 303.
- 3. Shin-ya, K.; Tanaka, M.; Furihata, K.; Hayakawa, Y.; Seto, H. Tetrahedron Lett. 1993, 34, 4943.
- 4. Reviews: Knölker, H.-J. In *Transition Metals for Organic Synthesis*; Beller, M.; Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 1, Chapter 3.13, p. 534. Knölker, H.-J. *Chem. Soc. Rev.* **1999**, *28*, 151.
- 5. (a) Knölker, H.-J.; Fröhner, W. Synlett 1997, 1108. (b) Knölker, H.-J.; Reddy, K. R. Synlett 1999, 596.
- Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936. Schaus, S. E.; Branalt, J.; Jacobsen, E. N. J. Org. Chem. 1998, 63, 4876.
- 7. Albrecht, M. Synthesis 1996, 230.
- 8. Review: Billington, D. C. Chem. Soc. Rev. 1985, 14, 93; et loc. cit.
- 9. Knölker, H.-J.; Fröhner, W. Tetrahedron Lett. 1997, 38, 1535.
- 10. Shvo, Y.; Hazum, E. J. Chem. Soc., Chem. Commun. 1974, 336.
- 11. Knölker, H.-J.; Baum, G.; Pannek, J.-B. Tetrahedron 1996, 52, 7345.
- 12. Crystal data for **12**: $C_{20}H_{22}BrNO_4$; M=420.30 g/mol, crystal size: $0.8 \times 0.7 \times 0.3$ mm, orthorhombic, space group $P_{2_1}2_{2_1}$, $\lambda=0.71073$ Å, a=9.4004(12) Å, b=10.1916(14) Å, c=20.098(3) Å, V=1925.5(5) Å³, Z=4, $\mu=2.159$ mm⁻¹, $\rho_{calc}=1.450$ g/cm³, T=200(2) K, θ range: $2.03-26.12^{\circ}$, reflections collected: 11941, independent reflections: 3761 ($R_{int}=0.0584$), refinement method: full-matrix least-squares on F^2 (program: SHELXL-93), final *R* values [$I>2\sigma(I)$]: $R_1=0.0358$, $wR_2=0.0891$, absolute structure (Flack parameter)¹³: $\chi=-0.010(9)$, maximal residual electron density: 0.427 e/Å³. Diffractometer: STOE IPDS area detector. Graphical representation: SCHAKAL-97. Crystallographic data (excluding structure factors) for this structure have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-137202, and may be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
- 13. Flack, H. D. Acta Crystallogr. Sect. A 1983, 39, 876.
- 14. Tomatsu, A.; Takemura, S.; Hashimoto, K.; Nakata, M. Synlett 1999, 1474.
- 15. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.